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Introduction 

There exists a number of design requirements necessitating incorporation 

of various cutouts to the walls, webs and panels of airplane structures. These allow 

for cables, hydraulic lines and wiring to be laid, provide inspectability, etc. If a 

cutout is to be made in a structural member, i.e. a frame, rib, bulkhead, an alternate 

load path must be provided, otherwise stress concentration must be countered with 

padding or other types of structural reinforcement. Furthermore, such a design is 

susceptible to fatigue cracking arising from stress increase due to the 

abovementioned effects. 

For large-scale cutouts, such as doors and transparencies, two design 

approaches are employed. First, the corner radii are maximized to prevent 

premature cracking of the cutout corners. Second, the cutout perimeter is 

reinforced with bulkheads, sills, straps and pad-ups of the skin. 

 Cold formed sheet metal solid structures are often used in the fuselage 

design, be it frames or floor beams (both exhibiting numerous cutouts in the web). 

It is prohibitively expensive to manufacture a conventional thickness pad-up at 

the cutout perimeter. The use of satellite fasteners is also not desired. A viable 

solution to this problem is cold forming a flanged hole. This design, however, is 

not without its limitations.  

 

Figure 1 – Cutout in a Formed Section Frame 
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Another example of cutouts in a structural element occurs in a rib of the 

wing. While the ribs, like other wing structures are not made of sheet metal, rather, 

they are generally milled from a plate, they are somewhat heavily loaded by: 

1) aerodynamic load transferred from the adjacent wing skin; 

2) vertical shear from wing spars; 

3) shear from mounted equipment, i.e. flaps, engines, landing gear; 

4) fuel slosh. 

 

 

Figure 2 – Cutouts in a Machined Rib 

 

 

Figure 3 – Cutouts in Typical Floor Beams 
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Chapter 1. Formulation of the Problem. 

 

1.1 The Necessity of Research 

 

As the market for commercial transport category aircraft is highly 

competitive, the regulations considering airworthiness and operational safety are 

ever tightening. Development and further research into existing methods of 

increasing the strength of the airframe is necessary for continuously maintaining 

a competitive advantage.  

Development and operation of modern aircraft puts a high demand on 

engineering and design, involves computed aided solutions for manufacturing, 

design and other fields of engineering.  

Maintaining the competitive advantage on the world market therefore 

requires constant innovation, scientific research and development to satisfy the 

need for strength, safety, efficiency and cost during all stages of the product  

life cycle. 

Cutouts in structural members is a widespread solution to the ever-present 

need for accessibility, inspectability and maintenance, cable routing and 

manufacturability of certain airplane structures. A single structure may exhibit 

few to several dozens of these cutouts, each of which requires special 

considerations and dedicated testing to determine their effects on the structures’ 

ultimate capability.  

As such, research into hole (cutout) reinforcement, its effects on shear 

buckling in particular, presents a multitude of viable problems. 
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1.2 The Task at Hand 

 

First, it is set forth that introduction of cutouts plays key role in decreasing 

the material capability of the affected structure. As stated previously, instability 

and stress concentration at the cutout are responsible for the loss of capability. For 

thin walled structures, the onset of buckling usually precedes material yield. This 

is helpful, since elastic buckling is significantly less complicated than plastic 

buckling, which governs ultimate capability of plates. The task is to classify and 

quantify the abovementioned effects. 

Second, it is necessary to quantify the effect of cutout reinforcement and 

approximate weight savings resulting from employing such techniques.  

Tests designed to assess the theoretical results and methods are generally 

subdivided into three categories: 

1) Full-scale tests, involving as-built structures in true operational conditions; 

2) Sub-scale tests, involving separate assemblies, installations, joints, in 

approximated operational conditions; 

3) Lab tests, involving test specimen and requiring special loading setups, 

mimicking the idealized theoretical model. 

Research into shear instability of plates has a fundamental drawback in that, 

the real-life structures usually never exhibit pure shear loading.  

The following requirements apply when analyzing the shear instability of 

plates in laboratory conditions: 

1)  The rigidity of the setup and its components is required to be several orders of 

magnitude more than the rigidity of the specimen, in order to ensure the 

deformation of the setup does not influence the behavior of the model and skew 

analysis results; 

2) It is not acceptable to allow for torsion or bending of the plate as it approaches 

and reaches the buckling point; 
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3) The boundary conditions must approximate the theoretically modelled 

constraints as closely as possible.  

4) Normal stresses in the plate must be negligible, while shear stresses bust be as 

uniform as possible; 

5) The setup should ideally be easy to manufacture and versatile, allowing for 

testing of variously sized specimen.  

A simple setup satisfying all of the abovementioned requirements is 

proposed. It is depicted in Figures 4 and 5 below. The setup is designed to be 

assembled without need for special manufacturing equipment and can be made 

from readily available stock. This setup allows for testing of various shapes and 

sizes of specimen.  

 

 

Figure 4 – Test Setup Principal Scheme 

 

The perimeter is comprised of either cold-rolled or extruded L-sections, 

which provide ample rigidity against bending and out of plane deflections. The 

plate being tested is then clamped to the testing setup with removable fasteners. 

Sufficient clamping force is required to ensure the plate does not slip.  
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Figure 5 – General View of the Test Setup 

 

On the Figure 5 above: 

1 – the plate being tested; 

2 – load application attachments; 

3 – boundary clamping beams. 

 

As far as the material of the test specimen, it is acceptable to use Plexiglas 

for several reasons, including the fact that it has lower Young’s modulus and 

ultimate strength, which allows for less load being applied and a lighter setup. 

Note: the thermal expansion properties of Plexiglass differ severely from those of 

aluminum and steel. Care must be taken to ensure the thermal equilibrium is 

maintained at all stages of testing not to compromise the accuracy of the results. 

It is important to perform validation of the test results, as well as to compare 

the results to those obtained with Finite Element Analysis methods. This allows 

to further confirm the validity and provides further insight into the behavior of the 

specimen being tested.  
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Figure 6 – FEM Analysis Results 

 

As seen from Figure 6, the Finite Element Model analysis provides 

adequate representation of the buckling mode observed during laboratory testing 

of physical specimen.  

One important aspect to note is the lack of twisting or displacement of 

unsupported nodes. If such a condition occurs, the plate becomes deformed, which 

may cause the buckling modes to differ significantly from what is expected.  

The setup involving bolts is fundamentally flawed in that corner fastener 

locations become overly loaded. A special precaution must be observed when 

assembling the described setup in order to ensure the fastener is capable of 

sustaining the required load. Both bearing and fastener shear are to be considered 

in general. 
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1.3 Conclusion 

 

Analysis of the results obtained shows leads to the following conclusions: 

 

1) The proposed setup for testing the shear buckling of flat rectangular plates 

follows all applicable requirements and allows for obtaining accurate results. 

 

2) The setup performs the best with rectangular plates where sides are equal in 

length, with relatively weak materials. 

 

3) The test setup provides a variable fixity of the edges of the plate, which should 

generally be assumed as clamped support. This is a limitation, since it is not 

possible to analyze simply supported or free boundary conditions, or a mix of 

boundary conditions. 

 

4) The setup requires special precautions to be observed for safe operation and 

obtaining accurate results. 
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Objective 

 

The objective of this research is gaining insight into the behavior of 

reinforced cutouts in conditions of pure shear loading, the effects of reinforcement 

on stability and stress distribution. This will allow for improved design, weight 

savings and therefore increased profitability of the airplane in operation. 

 

The objective is achieved with the aid of Finite Element Modeling (FEM) 

as implemented in MSC Patran and MSC Nastran applications. 
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Chapter 2. Computer Aided Analysis of Reinforced Cutouts in Plates 

 

2.1 Finite Element Modeling (FEM) 

 

Finite Element Modeling was first established when the need for solving 

complex elastic structural analysis tasks arisen in civil, naval and  

aerospace engineering.  

In the early twentieth century, it was first speculated that there is a 

possibility for modeling complex structures as a sum of simpler elements. In 

shipbuilding and construction of aircraft, these elements were the stringers, 

frames, stanchions, skin panels, etc. Hrennikoff (1941) first proposed the lattice 

analogy for modeling membrane and plate bending of structures, which he later 

developed to include the lattice models for plate and shell buckling. Maney, 

Ostenfeld (1920) devised a method of solving for stress distribution in a hinged 

frame with an array of linear algebraic equations. These methods sadly did not get 

widely implemented due to lack of computational capabilities. 

Early development of the Finite Element Modeling also got attention of 

Courant (1942). The consensus between him and his colleagues was in the concept 

of dividing the continuous region into smaller subregions, often called elements. 

In his works, Hrennikoff proposed to use an orthogonal grid for subdividing 

the region. Meanwhile, Courant advocated for triangular elements, which better 

correspond to the solution of the partial differential equations (PDE) of the second 

order. These equations arise when solving the problem of torsion of the cylinder. 

Courant's contribution was evolutionary, drawing on a large body of earlier results 

for PDEs developed by Rayleigh, Ritz, and Galerkin. 

The finite element method obtained its real impetus in the 1960s and 1970s 

by the developments of Argyris with co-workers at the University of Stuttgart, 

Clough with co-workers at UC Berkeley, Zienkiewicz with co-workers Hinton, 

Irons and others at Swansea University, Ciarlet at the University of Paris and 
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Gallagher with co-workers at Cornell University. Further impetus was provided 

in these years by available open source finite element software programs. NASA 

sponsored the original version of Nastran, and UC Berkeley made the finite 

element program SAP IV widely available. In Norway the ship classification 

society Det Norske Veritas developed Sesam in 1969 for use in analysis of ships. 

A rigorous mathematical basis to the finite element method was provided in 1973 

with the publication by Strang and Fix. The method has since been generalized 

for the numerical modeling of physical systems in a wide variety of engineering 

disciplines, e.g., electromagnetism, heat transfer, and fluid dynamics. 

A finite element method is characterized by a variational formulation, a 

discretization strategy, one or more solution algorithms and post-processing 

procedures. 

Examples of variational formulation are the Galerkin method, the 

discontinuous Galerkin method, mixed methods, etc. 

A discretization strategy is understood to mean a clearly defined set of 

procedures that cover (a) the creation of finite element meshes, (b) the definition 

of basis function on reference elements (also called shape functions) and (c) the 

mapping of reference elements onto the elements of the mesh. Each discretization 

strategy has certain advantages and disadvantages.  

There are various numerical solution algorithms that can be classified into 

two broad categories; direct and iterative solvers. These algorithms are designed 

to exploit the sparsity of matrices that depend on the choices of variational 

formulation and discretization strategy. 

P1 is a one-dimensional problem: 

 

 1

( ) ( ) (0,1),
:

(0) (1) 0,

u x f x in
P

u u

 =


= =
 (1.1.1) 

where f is given, u is an unknown function of x, and u is the second derivative of 

u with respect to x. 
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P2 is a two-dimensional problem: 

 

 1

( , ) ( , ) ( , ) ,
:

0

xx yyu x y u x y f x y in
P

u on

+ = 


= 
 (1.1.2) 

 

where Ω is a connected open region in the (x, y) plane whose boundary ∂Ω is nice 

(e.g., a smooth manifold or a polygon), and uxx and uyy denote the second 

derivatives with respect to x and y, respectively. 

The problem P1 can be solved directly by computing antiderivatives. 

However, this method of solving the boundary value problem (BVP) works only 

when there is one spatial dimension and does not generalize to higher-dimensional 

problems or to problems like u u f+ = . For this reason, we will develop the finite 

element method for P1 and outline its generalization to P2. 

The first step is to convert P1 and P2 into their equivalent weak 

formulations. If u solves P1, then for any smooth function v that satisfies the 

displacement boundary conditions, i.e. v = 0 at x = 0 and x = 1, we have 

 

 
1 1

0 0
( ) ( ) ( ) ( )f x v x dx u x v x dx=   (1.1.3) 

 

Conversely, if u with u(0) = u(1) = 0 satisfies (1.1.3) for every smooth 

function v(x) then one may show that this u will solve P1. The proof is easier for 

twice continuously differentiable u (mean value theorem) but may be proved in a 

distributional sense as well. 
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We define a new operator or map ϕ(u, v) by using integration by parts on 

the right-hand-side of (1.1.3): 

 

 

0

1 1

0 0

1 1 1

0 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( , )

f x v x dx u x v x dx

u x v x u x v x dx u x v x dx u v

= =

    = − = − = −

 

 
 (1.1.4) 

 

where we have used the assumption that v(0) = v(1) = 0. 

If we integrate by parts using a form of Green's identities, we see that if u 

solves P2, then we may define ϕ(u, v) for any v by 

 

 ( , )f v ds u v ds u v
 

= −   = −   (1.1.5) 

 

where denotes the gradient and   denotes the dot product in the two-

dimensional plane. Once more ϕ can be turned into an inner product on a suitable 

space 1
0( )H   of once differentiable functions of Ω that are zero on ∂Ω. We have 

also assumed that 1
0( )v H  . Existence and uniqueness of the solution can also 

be shown. 

We can loosely think of 1
0(0,1)H  to be the absolutely continuous functions 

of (0, 1) that are zero at x = 0 and x = 1. Such functions are (weakly) once 

differentiable and it turns out that the symmetric bilinear map ϕ then defines an 

inner product which turns 
1
0(0,1)H  into a Hilbert space (a detailed proof is 

nontrivial). On the other hand, the left-hand-side 
1

0
( ) ( )f x v x dx  is also an inner 

product, this time on L2(0, 1). An application of the Riesz representation theorem 

for Hilbert spaces shows that there is a unique u solving (1.1.4) and therefore P1. 
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This solution is a-priori only a member of 1
0(0,1)H  but using elliptic regularity, 

will be smooth if f is. 

P1 and P2 are ready to be discretized which leads to a common sub-problem 

P3. The basic idea is to replace the infinite-dimensional linear problem: 

 

Find 1
0u H  such that 

1
0, ( , )v H u v f v  − =   

 

with a finite-dimensional version: 

 

Find u V such that 

, ( , )v V u v f v  − =   

 

where V is a finite-dimensional subspace of 1
0H . There are many possible choices 

for V (one possibility leads to the spectral method). However, for the finite 

element method we take V to be a space of piecewise polynomial functions. 

We take the interval (0, 1), choose n values of x with  

 

0 1 10 1n nx x x x +=     =  and we define V by: 

 

 1
,{ :[0,1] : is continuous, is linear for 0, , , and (0) (1) 0}

k k
x xV v v v k n v v

+

= → = = =  

 

where we define x0 = 0 and xn+1 = 1. Observe that functions in V are not 

differentiable according to the elementary definition of calculus. Indeed, if v V

then the derivative is typically not defined at any , 1, ,kx x k n= = . However, the 

derivative exists at every other value of x and one can use this derivative for the 

purpose of integration by parts. 
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We need V to be a set of functions of Ω. The space V would consist of 

functions that are linear on each triangle of the chosen triangulation. 

One hopes that as the underlying triangular mesh becomes finer and finer, 

the solution of the discrete problem P3 will in some sense converge to the solution 

of the original boundary value problem P2. To measure this mesh fineness, the 

triangulation is indexed by a real valued parameter h > 0 which one takes to be 

very small. This parameter will be related to the size of the largest or average 

triangle in the triangulation. As we refine the triangulation, the space of piecewise 

linear functions V must also change with h. For this reason, one often reads Vh 

instead of V in the literature. Since we do not perform such an analysis, we will 

not use this notation. 

To complete the discretization, we must select a basis of V. In the one-

dimensional case, for each control point xk we will choose the piecewise linear 

function vk in V whose value is 1 at xk and zero at every ,jx j k , i.e., 

 

 

1
1,

1

1
, 1

1

if

if

0 otherwise

k
k k

k k

k
k k k

k k

x x
x x x

x x

x x
v x x x

x x

−
−

−

+
+

+

 −
   −

 −
 =   −





 (1.1.6) 

 

For k = 1,…, n this basis is a shifted and scaled tent function. For the two-

dimensional case, we choose again one basis function vk per vertex xk of the 

triangulation of the planar region Ω. The function vk is the unique function of V 

whose value is 1 at xk and zero at every ,jx j k . 

Depending on the author, the word "element" in "finite element method" 

refers either to the triangles in the domain, the piecewise linear basis function, or 

both. Finite element method is not restricted to triangles. 
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More advanced implementations (adaptive finite element methods) utilize 

a method to assess the quality of the results (based on error estimation theory) and 

modify the mesh during the solution aiming to achieve approximate solution 

within some bounds from the exact solution of the continuum problem. Mesh 

adaptivity may utilize various techniques, the most popular are: 

1) moving nodes (r-adaptivity); 

2) refining (and unrefining) elements (h-adaptivity); 

3) changing order of base functions (p-adaptivity); 

4) combinations of the above (hp-adaptivity). 

 

Finite Element Modeling has several advantages: 

1) By making the subregion to have relatively simple geometry, the basis 

functions end up being relatively simple and consistent. 

2) By refining the sub-elements, the shape and form of Ω is approximated ever 

more accurate. This is vitally important for more complex geometries. It is 

possible to increase the density of sub-elements where a discontinuity or a 

large gradient in the solution is expected. 

3) It is relatively easy to find the basis functions that satisfy the boundary 

conditions of a sub-region.  

4) Since the basis functions are zero outside of the subregion, the computational 

requirements are reduced. 

5) The basis functions do not overlap; therefore, it is possible to integrate over 

the entire region by adding the results of integration of each sub-region. 

6) FEM is extremely versatile and allows for solving any non-linear problems 

with a wide variety of material properties. 

7) FEM is highly programmable which allows for its application in many fields. 
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2.2 Finite Difference Method (FDM) 

Finite-difference methods are discretizations used for solving differential 

equations by approximating them with difference equations where finite 

differences approximate the derivatives.  

FDMs convert a linear ordinary differential equations (ODE) or non-linear 

partial differential equations (PDE) into a system of equations that can be solved 

by matrix algebra techniques. The reduction of the differential equation to a 

system of algebraic equations makes the problem of finding the solution ideally 

suited to modern computers, hence the widespread use of FDMs in modern 

numerical analysis. 

Two FDMs are described below. First, the median derivative method, 

which is used for solving the static equilibrium equations in dynamic problems. 

This method is classified as direct integration method. 

Equilibrium equation for a system of finite elements in motion is: 

 

 MU CU KU R+ + =  (1.2.1) 

 

where M, C and K are the matrices of mass, dampening and rigidity respectively, 

R is the applied forces vector, U, U and U are the vectors of translations, 

velocities and accelerations. 

Direct numerical integration is based on several concepts. First, it is only 

necessary to satisfy the equilibrium equations at short discrete time intervals, and 

not continuously. Second, the change in U, U and U may be accounted for, 

because they are assumed to be known, and the only thing left to be found is the 

solution to (1.2.1) within ( )0,t T . The time period t is further subdivided into n 

equal sub-intervals Δt: 

 

 /t T n =  (1.2.2) 
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The Median Derivative Method assumes the following: 

 

  2

1
2t t t t t tU U U U

t
− += − +


 (1.2.3) 

 

Error resulting from (1.2.3) has an order of 2( )t , therefore, it is sufficient 

to use the following equations when solving for velocities: 

 

 ( )
1

2
t t t t tU U U

t
− += − +


 (1.2.4) 

 

Displacement at point of time t t+  is calculated with respect of (1.2.1) to t: 

 

 t t t tMU CU KU R+ + =  (1.2.5) 

 

By substituting (1.2.3) and (1.2.4) into (1.2.5), we obtain an equation: 

 

 2 2 2

1 1 2 1 1

2 2
t t t t t tM C U R K M U M C U

t t t t t
+ +

     
+ =  − − −     

           (1.2.6) 

 

which allows us to find t tU + . Calculation of the displacement t tU + is based on 

equilibrium equations being satisfied at time t (1.2.5).  

Another quirk of this method is that t tU + is obtained from  

tU  and t tU − . Therefore, calculating the displacement requires a special pre-

processing step.  
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Since 0U  ,
0U  and 

0U  are known (and if only 0U  ,
0U  are known, then it is 

possible to find the rest by using (1.2.1)), then by using (1.2.3) and (1.2.4) the 

value of t tU − can easily be obtained: 

 

 
2

( ) ( ) ( ) ( )

0 0 0
2

i i t i

t

t
U U tU U−


= − +  (1.2.7) 

 

where the upper index (i) denotes a corresponding vector element. 

In case of absence of dampening, the equation (1.2.6) can be re-written as: 

 

 
2

1 ˆ ,t t tM U R
t

+

 
= 

 
 (1.2.8) 

where 

 

 
2 2

2 1ˆ
t t t t tR R K M U M U

t t
−

   
= − − −   

    
 (1.2.9) 

 

The displacements are then obtained from the formula: 

 

 
2

( ) ( )ˆ ,i i

t t t

il

t
U R

m
+

 
=  

 
 (1.2.10) 

where ( )i

t tU + and 
( )ˆ i

tR are corresponding components of the vector t tU + and ˆ
tR ; ijm is 

an element of the M. 

It is not necessary to transform the rigidity matrix or the mass matrix to a 

triangular state, therefore, neither is it necessary to build K and M for the entire 

ensemble. 

Since: 

 

 ;l i

l i

K K M M= =   (1.2.11) 
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Therefore, 2 2, (2 / ) and ( / )t t t tKU M t U M t U −   in (1.2.9) need only be calculated on 

the element level by adding up each element’s contribution in the loads vector. 

Thus, the following is true for ˆ
tR : 

 

 ( ) ( )2

1ˆ 2t t i t i t t t

i i

R R K U M U U
t

−= − − −


   (1.2.12) 

 

where i tKU  and ( 2 )i t t tM U U− −  are calculated with andi iK M  in a  

compact formula.  
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2.3 Continuous medium 

 

There are many known approaches for solving for the movement of a 

continuous medium. Some of the notable ones are: Lagrangian, Euleran and 

Lagrangian-Eulerian Formulation, the latter is often referred to as Lagrangian-

Еuleran Formulation (ALE).  

Lagrangian formulation has limited applicability for problems with massive 

deformation of shape. It is generally not applicable where large deformations of 

the mesh are present.  

Solving the ALE formulation sometimes involves displacing the nodes of 

the mesh so that the mesh warp is minimized. If material is flowing relative to the 

mesh, additional equations are used. 

In a multi-material Euleran formulation, the medium is allowed to flow 

through the mesh, which is fixed in place. Furthermore, it is possible to have a 

mesh element which contains materials of several types. This is useful when solids 

are mixed with liquids, then, the Lagrangian approach is used for solids and 

Euleran for liquids. In general, this effect is called fluid-structure interaction.  

 

Several equations make up the Lagrangian formulation, such as: 

conservation of mass, momentum, energy balance and a governing equation. 

Mass conservation equation is: 

 

 ( ) 0,div v + =  (1.3.1) 

 

where  is the density and v the velocity. 
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Equation of conservation of momentum is: 

 

 ( ),x g div  = +  (1.3.2) 

 

where x  is acceleration,  is the stress tensor, g is the free fall acceleration. 

Equation of conservation of energy is: 

 

 : ,u D r q  = + −  (1.3.3) 

 

where u  is the rate of change of the internal energy, D is the deformation rate, r 

is the intensity of the thermal source, q is the heat flow and : is the double scalar 

multiplication operator.  

Spatial discretization of the equation of conservation of momentum 

involves going from (1.3.2) to solving the following: 

 

 ( )( )
V

x g div dv  − −   (1.3.4) 

 

with appropriate boundary conditions. By utilizing the procedures from FEM, 

solving equation (1.3.4) becomes solving the following: 

 

 
i eM d F F= +  (1.3.5) 

where d  is the vector of nodal velocities, ,i eF F are vectors of internal and 

external forces respectively. 

Spatial discretization of the equation of conservation of energy involves 

transitioning from equation (1.3.3) to solving  

 

 ( ):
V

u D r q dv   − − +     (1.3.6) 
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It is possible to transform the equation (1.3.6) to the following form: 

 

 
t eM F F   = +  (1.3.7) 

 

where θ is the temperature, M


is the heat capacity matrix, ,t eF F 
are vectors of 

internal and external thermal loads respectively. 

Vector of internal forces, included in equation (1.3.5) is defined by the third 

term of the expression integrated over: 

 

 ( ) ( ) ( ):
V B V

div dv n db dv   =  −     (1.3.8) 

 

and it is equal to: 

 

 ( ):i

V

F dv=   (1.3.9) 

 

Vector iF  is obtained by adding up all internal forces for all elements 

included in the model. For each element, the vector of internal loads is defined by 

 

 ,
e

e T

i

V

f B dv=   (1.3.10) 

 

where B is the derivative of the shape of the element, and   comprises of six 

components of the stress tensor.  

The vector of external forces eF  in equation (1.3.5) accounts for the 

distribution of the applied loads. 
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Nodal accelerations may be derived from (1.3.5) and are as follows: 

 

 ( )1

i ed M F F−= +  (1.3.11) 

 

By integrating over time with increments up to the second order of 

magnitude, accelerations, velocities and displacements are obtained: 

 

 

( )1

1 2 1 2

1 1 2

;

;

,

n i e

n n n

n n n

d M F F

d d d t

d d d t

−

+ −

+ +

= +

= 

= + 

 (1.3.12) 

 

The solution will be accurate, provided the time increment is: 

 

 
2

,avg

max

t


 =  (1.3.13) 

 

where max  is the maximum natural frequency of the system. 

It may often be cumbersome to determine max , to cope with this, the 

frequency may be estimated: 

 

 
2

,max

min

c

x
 


 (1.3.14) 

  

where c is the speed of sound in the medium, minx is the smallest element size. 

The speed of deformation is defined by  

 

 ,D t =   (1.3.15) 
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Euleran and ALE Formulations describe the movement of the medium 

through the mesh and therefore require additional laws of conservation. It should 

be noted that along with the medium flowing through the mesh, certain variables 

used to describe its prior states have to kept track of. Among these variables are 

density, temperature, strain, etc. These variables are referred to as historical 

variables. An example of a derivative of such a variable is shown below: 

 

 ( ),v x  = +   −  (1.3.16) 

 

where    is the derivative of the variable with respect to time in a static coordinate 

system, v is the velocity of the deformation of the mesh and x  is the velocity of 

the material point. 

In both Euleran and ALE formulations the nodes of the mesh do not follow 

the movement of the medium. Therefore, the energy conservation equation  

is altered: 

 

 ( ) :u u v x D r q   =   − + + −  (1.3.17) 

 

The equation that describes changes in historical variables is similar to 

equation (1.3.17). In this equation, : ,x D r q = = =  therefore .u u v= 

This leads to the conclusion that ( ) ( )0 1x xu t u t= . 

The Lagrangian derivative with respect to time is calculated first, then with 

respect to the historical variable. The relative motion of the medium with respect 

to the mesh, and historical variables are made to correspond to nodes and elements 

of the static mesh.  
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The rate of flow of the medium defines the critical time step length: 

 

 
2

min , ,
e e

cr e

x x
t

c v

  
   

 
 (1.3.18) 

 

where c is the speed of sound in the medium, ex  is the minimum typical mesh 

element size and ev  is the average number of nodes of an element. 

Modifications of the mesh aimed at reducing distortions is called mesh 

rectification. In an Euleran formulation, after computing the Lagrangian step, the 

mesh returns to its initial configuration. ALE approach contains two options of 

mesh rectification after the Lagrangian step: 

1) Direct method, which allows nodes to slide along pre-defined lines between 

adjacent nodes; 

2) Iterative method of rectification. 

Iterative solutions to mesh rectification seek out a new configuration of 

nodes which minimizes the distortion. After new node locations are obtained, 

historical variables are mapped over.   
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Chapter 3. Plate Buckling Analysis 

 

As the plate element is subjected to various types of loading, such as direct 

compression, bending, shear or a combination thereof, the plate may buckle 

locally before the member becomes unstable or before the yield stress is reached. 

Such local buckling is characterized by out of plane deflection of the plate. 

Although buckling is often considered a sudden or discontinuous process, the 

inevitable presence of initial out of planeness results in a gradual growth of this 

displacement as the loading increases to the theoretical critical level. 

The theoretical elastic buckling load is not on its own a basis for design. 

Where buckling of plates may be present, ultimate strength often exceeds the 

buckling limit. Unlike beam columns, buckled plates continue to provide 

structural capability due to post-buckling behavior. Therefore, additional load 

may be applied without structural damage. It may be argued that in an ideally 

designed structure, ultimate material capability should be reached during inelastic 

buckling. The presence of buckling, however, affects the redistribution of stresses 

within the member and therefore complicates the analysis of ultimate material 

capability.  

An examination of the buckling behavior of a single plate supported along 

its edges is an essential preliminary step toward the understanding of local 

buckling behavior of plate assemblies. The buckling stresses are obtained from 

the concept of bifurcation of an initially perfect structure. In practice, the response 

of the structure is continuous, due to the inevitable presence of initial 

imperfections. Thus, the critical stress is best viewed as a useful index to the 

behavior, as slender plates can continue to carry additional loads well after initial 

buckling. 

The analysis of the elastic critical stress for a rectangular plate simply 

supported along all edges and subjected to a uniform longitudinal compressive 

stress was presented in 1891 [8]. The elastic critical stress of a long plate segment 

is determined by the plate width-to-thickness ratio b / t, by the restraint conditions 
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along the longitudinal boundaries, and by the elastic material properties (elastic 

modulus, E, and Poisson’s ratio ν). The elastic critical stress σc is expressed  

as follows: 

 
2

2 212(1 )( / )
c

E
k

b t





=

−
 (2.1.1) 

in which k is the plate buckling coefficient determined by a theoretical critical 

load analysis and is a function of both the plate geometry and boundary conditions 

illustrated below. 

 

Figure 7 – Plate Loaded in Compression 

 

Case Edge Support k 

 

1 Both edges simply supported 4.00 

2 One simply supported, other fixed 5.42 

3 Both edges fixed 6.97 

4 One simply supported, other free 0.43 

5 One edge fixed, other free 1.28 
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When a plate element is relatively short in the direction of the compressive 

stress there may exist an influence in the elastic buckling stress since the buckled 

halfwaves which take integer values are forced into a finite length plate.  

The value of k varies as a function of normalized plate length; the variation 

is a function of the plate boundary conditions and the loading. Full analytical 

solutions for k as a function of the aspect ratio a / b may be found in Timoshenko 

and Gere [1], Allen and Bulson [9] and others. When a plate element is very short 

in the direction of the compressive stress (i.e. a / b << 1), the critical stress may 

be conservatively estimated by assuming that a unit width of plate behaves like a 

column.  

 

 

Figure 8 – Plate Loaded in Pure Shear 

 

 

3.1 Shear Buckling of Plates 

 

When a plate is subjected to edge shear stresses as shown in Figure 8, it is 

said to be in a state of pure shear. The critical shear buckling stress can be obtained 

by substituting σc and k in (2.1.1) for fsc and ks, in which ks is the buckling 

coefficient for shear buckling stress. Critical stress coefficients, ks, for plates 

subjected to pure shear have been evaluated for three conditions of edge support. 

Thickness = t 

a 

b 
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These relationships are plotted with the side b, as used in (2.1.1), always assumed 

to be shorter than side a. Thus, α is always greater than 1 and by plotting ks in 

terms of 1 / α, the complete range of ks can be shown and the magnitude of ks 

remains manageable for small values of α. 

The equation (2.1.1) can now be re-written as 

 

 
2

2 212(1 )( / )
cr s

E
Fs k

b t




=

−
 (2.1.2) 

 

Solutions developed by Timoshenko [2], Bergmann and Reissner [10], and 

Seydel [11] are approximated the following equations: 

 

 

2

2

4.00 5.34 / 1

5.34 4.00 / 1
s

for
k

for

 

 

 + 
= 

+ 

 (2.1.3) 

 

In 1924, Southwell and Skan obtained ks = 8.98 for the case of the infinitely 

long rectangular plate with clamped edges. For the finite-length rectangular plate 

with clamped edges, Moheit [12] obtained 

 

 

2

2

5.60 8.98 / 1

8.98 5.60 / 1
s

for
k

for

 

 

 + 
= 

+ 

 (2.1.4) 

 

Sometimes a plate is clamped on two opposite edges and simply supported 

on the other two edges. A solution for this problem has been given by Iguchi [13] 

for the general case, and by Leggett [14] for the case of the square plate. Cook 

and Rockey [15] later obtained solutions considering the antisymmetric buckling 

mode which was not considered by Iguchi. The expressions below were obtained 
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by fitting a polynomial equation to the Cook and Rockey results. For long edges 

clamped, the equations are 

 

 

2

2 3

8.98 / 5.61 1.99 1

8.98 5.61/ 1.99 / 1
s

for
k

for

  

  

 + −  
= 

+ − 

 (2.1.5) 

 

And for short edges clamped, the equations are as follows: 

 

 

2

2 3

5.34 / 2.31/ 8.39 1

5.34 2.31/ 3.44 / 8.39 / 1
s

for
k

for

   

   

 + −  
= 

+ − + 

 (2.1.6) 

 

Curves for α ≥ 1 are plotted in Figure 10. Tension and compression stresses 

exist in the plate, equal in magnitude to the shear stress and inclined at 45°. The 

destabilizing influence of compressive stresses is resisted by tensile stresses in the 

perpendicular direction, often referred to as ‘tension field action’ in the literature. 

Unlike the case of edge compression, the buckling mode is composed of a 

combination of several waveforms and this is part of the difficulty in the buckling 

analysis for shear. 

Figure 9 – Four Common Types of Edge Support 
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Figure 10 – Shear Stability Coefficients 

Note: Figure 10 curves are engineering curves, which do not represent the actual 

nature of the buckling behavior, rather, provide an accurate and conservative 

estimate of the buckling coefficient. Nonetheless, values for infinitely long plate 

and square plate are exact. Asymmetric conditions edge support conditions are 

not included. 
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3.2 Geometry 

 

For the purposes of this analysis, a square aspect ratio has been chosen. The 

general method presented may successfully be applied to various aspect ratios. 

The relative size of the cutout (its diameter) varies between 0.30 and 0.65 lengths 

of the side of the plate, which is a unit length (1 inch). The cutout is positioned in 

the center of the plate. For flanged holes, the flange thickness is equal to the plate 

thickness, which is 1% of the plate length. The flange is normal to the plane of 

the plate and its height is 5% of the cutout diameter. The pad-up thickness is 2% 

of the plate length or 200% of nominal plate thickness. 

 

Figure 11 – Plate Geometry 

a) 

b) 

c) 

d) 
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For Plate Geometry, see Figure 11 on the previous page. Four 

configurations are depicted simultaneously: a) d / b = 0.300; b) d / b = 0.375;  

c) d / b = 0.500 and d) d / b = 0.650, where d is the hole diameter and b the length 

of the plate. 

 

For Flange Geometry, see Figure 12 below.  

 

Figure 12 – Flange Geometry, d / b = 0.300, a / b = 1.00 

 

3.3 Material Properties 

The material properties are modelled after generic aluminum. The material 

is isotropic and linearly elastic.  

310.00 10 ksicE E= =    Young’s Modulus 

0.33 =     Poisson’s Modulus 

( )
33.759 10 ksi

2 1

E
G


= = 

+
 Shear Modulus, implicitly defined 

t = 0.01 in    Plate unpadded thickness 
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3.4 Mesh 

 

Several meshes are built to establish the necessary limits for element size 

to maintain convergence of the results. Mesh is seeded with unidirectional length 

bias in certain locations. See Figure 13 for mesh seeds.  

 

 

Figure 13 – Mesh Seeds (one quadrant shown) 

 

By utilizing the geometric boundaries, the subregions are mappable with 

IsoMesh. Quadrilateral elements are chosen for mapping. For final mesh 

configuration, see Figure 14 below. Mesh verification is detailed later on. 
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Figure 14 – Mesh Topology (one quadrant shown) 

 

The mesh is symmetrical, which means all four quadrants are identical 

except for rotation by multiples of 90 degrees.  

In order to obtain different hole sizes, the geometry around the cutout is 

simply deleted, i.e., meshes with different hole sizes are identical except for the 

region between the hole radii, which is removed for larger hole size. 

See following pages for analysis of mesh quality. 
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Figure 15 – Element Jacobian Ratio Verification 

 

 

Figure 16 – Element Aspect Ratio 
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Figure 17 – Element Skew 

 

 

Figure 18 – Element Taper 
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Table 1 – Mesh Quality Parameters 

Parameter Max Min 

Jacobian Ratio 1.15 1.02 

Aspect Ratio 1.00 2.09 

Element Skew 90.0 deg 47.7 deg 

Element Taper 0.0712 0.0104 

Element Length 0.069 in 0.011 in 

 

Mesh quality parameters are presented in Table 1. Overall, the mesh quality 

is deemed acceptable. The mesh is sufficiently refined to provide accurate results. 

 

3.5 Boundary Conditions 

 

The boundaries of the model are the edges of the hole or flange and the 

perimeter of the plate. Displacement constraints are used.  

The boundary conditions are defined as follows for edges simply supported: 

1) Edges of the hole or flange are free and unloaded. 

2) The perimeter is constrained in translation along the Z axis (out of plane). 

3) The corner (located at the origin) is constrained in any translation and rotation. 

 

The boundary conditions are defined as follows for edges clamped: 

1) Edges of the hole or flange are free and unloaded. 

2) The perimeter is constrained in translation along the Z axis. 

3) The perimeter is constrained in rotation about the vertical and horizontal axis. 

4) The corner is constrained in any translation and rotation. 

 

Thus, the model is sufficiently constrained. 
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3.6 Load Conditions 

 

A uniform distributed unit shear is applied to the edges for pure shear.  

See Figure 19 below for positive shear sign convention. 

 

 

Figure 19 – Positive Uniform Unit Shear  
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3.7 Mesh Verification 

 

In order to determine if the level of mesh refinement is sufficient for 

convergence of the results with test data, a model of a plate without a cutout is 

tested with various mesh sizes. 

Table 2 – Mesh Convergence 

n N ℓ, in 
Simply Supported Clamped 

Fscr, ksi ks Fscr, ksi ks 

4 16 0.2500 13.526 14.654 34.440 37.314 

6 36 0.1667 10.157 11.004 18.563 20.112 

8 64 0.1250 9.297 10.073 15.554 16.852 

12 144 0.0833 8.799 9.533 14.038 15.209 

16 256 0.0625 8.667 9.390 13.690 14.833 

24 576 0.0417 8.595 9.312 13.531 14.660 

32 1024 0.0313 8.574 9.290 13.494 14.620 

48 2304 0.0208 8.559 9.273 13.473 14.597 

64 4096 0.0156 8.552 9.266 13.466 14.590 

 

 

Figure 20 – Mesh Convergence 

y = 278.1 x3 + 17.14 x2 - 0.115 x + 9.266

R² = 1.000

y = 2,065 x3 - 181.39 x2 + 7.072 x + 14.590
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In Table 2, critical shear buckling stress Fscr is obtained directly from 

Patran solution by multiplying applied shear stress by the lowest positive 

eigenvector factor corresponding to the first buckling mode of the plate; n is the 

number of mesh elements along the length of the plate; N is the total number of 

elements (note, Patran license used allows up to 5,000 elements in a model) and 

ks is obtained from the equation (3.1.2); ℓ is the length of the element.  

Note: I and II correspond to boundary conditions as described in Figure 9.  

Example of calculations for n = 64, simply supported, is provided below. 

 

Factor = 85.52 

b = 1 in 

t = 0.01 in 

Ps = 1 lbs 

( ) 2/ 1lbs / 0.01in 100 psis sf P b t=  = =  

100 psi 85.52 8.552 ksicr sFs f Factor=  =  =  

310.00 10 ksiE =   

0.33 =  

2 2 2 2

2 2 3

12(1 )( / ) 8.552 ksi 12(1 0.33 )(1in / 0.01in)
9.266

10 10 ksi

cr

s

Fs b t
k

E



 

    −  −
   = = =

 
 

 

Figure 20 is created by plotting ks against ℓ from data contained in Table 2. 

It is observed that the mesh converges rapidly with increase in the number of 

elements, however, once the element length ℓ reaches 0.08 inches, increasing the 

mesh density provides diminishing returns.  

Values of the shear coefficient obtained during mesh verification are very 

close to the theoretical values. The behavior of the plate resembles actual 

deformations observed in the physical experiments. The magnitude of 

translational eigenvectors is plotted in Figures 21 and 22 on the following page.  
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Figure 21 – Clamped Plate Buckling Mode 

 

 

Figure 22 – Simply Supported Plate Buckling Mode 
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3.8 Effect of the Flange on Shear Buckling of a Plate with a Cutout 

 

Buckling analysis is performed for a range of diameter to width ratios for 

both clamped and simply supported boundaries. Comparison between flanged 

hole and reference hole (without the flange) is made, according to  

Tables 3 and 4 below. 

Table 3 – Plate Shear Buckling Stress 

Fscr, ksi 

d / b 
Clamped Simply Supported 

Flanged Reference Flanged Reference 

0.000 13.466 13.466 8.552 8.552 

0.300 10.456 7.900 6.514 4.916 

0.375 10.200 6.604 6.258 3.965 

0.500 9.911 4.924 5.915 2.689 

0.650 9.939 3.618 5.592 1.665 

 

 Table 4 – Plate Shear Buckling Coefficient 

ks 

d / b 
Clamped Simply Supported 

Flanged Reference Flanged Reference 

0.000 14.59 14.59 9.266 9.266 

0.300 11.33 8.56 7.06 5.33 

0.375 11.05 7.16 6.78 4.30 

0.500 10.74 5.34 6.41 2.91 

0.650 10.77 3.92 6.06 1.80 

 

Calculations in Tables 3 and 4 are calculated in the same was described 

during Mesh Verification. The gathered data is plotted in Figure 23. The 

relationships are approximated by polynomial equations. It is assumed that as the 

hole diameter approaches zero, the results should converge to correspond to the 

results of plate shear buckling without a cutout. Therefore, extrapolation is 

possible for smaller hole diameters. 
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Figure 23 – Shear Buckling Coefficients Comparison 

 

The best fit polynomials for Figure 23 above are as follows: 

 

Table 5 – Polynomial Approximations 

Series Equation R2 

Flanged, Clamped 
3 210.77 24.28 17.12 14.59y x x x= − + − +  1.000 

Flanged, Reference 
3 217.45 5.815 20.00 14.59y x x x= − − +  1.000 

Flanged, Simple Support 
3 28.719 15.17 11.11 9.266y x x x= − + − +  1.000 

Reference, Simple Support 
3 217.48 11.71 11.25 9.266y x x x= − − +  1.000 
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3.9 Effect of the Flange on Stress Concentration in a Plate with a Cutout 

 

For stress concentrations, no significant difference was observed between 

clamped and simply supported plates. The stress concentration results are 

therefore averaged. Comparison between flanged hole and reference hole (without 

the flange) is made, according to Tables 6 below. 

 

Table 6 – Shear Stress Concentration 

d / b 
fs, psi 

fsnet, psi 
Flanged Reference 

0.000 100 100 100 

0.300 247 265 143 

0.375 289 308 160 

0.500 381 417 200 

0.650 574 651 286 

 

Table 7 – Shear Stress Concentration Coefficients 

d / b Ksg Ksnet 

Flanged Reference Flanged Reference 

0.300 2.47 2.65 1.90 2.04 

0.375 2.89 3.08 1.99 2.12 

0.500 3.81 4.17 2.10 2.29 

0.650 5.74 6.51 2.21 2.51 

 

where fsnet is the net shear stress, Ksg and Ksnet are gross and net stress 

concentration coefficients respectively. These values are obtained as follows: 

 

( ) ( )
1lbs

0.01in 1in

s
net

P
fs

t b d d
= =

 −  −
 

/100 lbs

/

g

net net

Ks fs

Ks fs fs

=

=
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As seen from Table 6, peak shear stress is reduced if the hole is flanged. 

Maximum shear stress occurs in each quadrant of the plate.  

 

Figure 24 – Flanged Shear Stress Distribution, d / b = 0.375 

 

 

Figure 25 – Reference Shear Stress Distribution, d / b = 0.375 
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Figure 26 – Net Shear Stress Concentration 

 

 

Figure 27 – Gross Shear Stress Concentration 
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From Table 6, shear stress concentration is plotted in Figures 26 and 27.  

It is observed that flanged hole has slightly lower shear stress concentration. The 

flange does not change the stress distribution significantly. 

It should be noted that as d / b approaches zero, the difference between 

flanged and reference holes disappears.  

 

 

3.10 Tensile Stress Distribution 

 

Peak tensile stresses are obtained at the hole edge and are further illustrated 

in Figures 30 and 31 on the following pages. Also see Figures 28 and 29 for typical 

tensile stress distribution. 

 

Table 8 – Peak Tensile Stresses 

d / b 
ftmax, psi Ktg Ktn 

ftnet, psi 
Reference Flanged Reference Flanged Reference Flanged 

0.000 100 100 not applicable 100 

0.300 530 478 5.298 4.781 3.709 3.347 143 

0.375 615 559 6.151 5.591 3.844 3.494 160 

0.500 833 750 8.329 7.500 4.165 3.750 200 

0.650 1297 1130 12.97 11.30 4.539 3.956 286 

 

In Table 8, the following is assumed:  

( )/ 1 /net reffs f d b= −  

/ , 100 psi

/

g max ref ref

n max net

Kt ft f f

Kt ft ft

= =

=
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Figure 28 – Tensile Stress Concentration 

 

 

Figure 29 – Net Tensile Stress Concentration 
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Figure 30 – Reference Diagonal Tension Field 

 

 

Figure 31 – Flanged Hole Diagonal Tension Field 
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3.11 Potential Weight Savings 

 

Based on analysis performed, weight savings from utilizing cutout 

reinforcement may be calculated. Example calculation is performed for the 

following panel configuration: 

• All edges simply supported, 

• a / b = 1.00, 

• b / t = 100.   (reference) 

 

  

 
( )

2 2

2 2
26.78

1.577
4.30

/1.577 63%

cr crflanged reference

s s
flanged reference

s flanged reference

s flangedreference

flanged reference reference

Fs Fs

k t k t

k t

k t

t t t

= 

     =  
   

   
 = = =       

= = 

 

 

In this case, the thickness of the plate may be reduced to 63% of original 

thickness without sacrificing the buckling capability. However, this may lead to 

net tension failure. Therefore, weight savings will ultimately be determined by 

shear or tension stress reduction, whichever is the smallest. However, more 

detailed analysis should always be performed for a specific panel configuration. 

 

289 psi
93.8%

308 psi

559 psi
91.0%

615 psi

flanged

reference

flanged

reference

fs

fs

ft

ft

= =

= =

  Stress obtained from Tables 6 and 8 

 

The weight of the panel may be reduced to at least 93.8% of the original, assuming 

the weight of the flange is negligible, and the panel is not critical for buckling. 
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Discussion and Conclusions 

 

There are potential limitations to gaining any benefit from reinforcement of 

cutouts by means of incorporating the flanged edge. Among those limitations, 

thicker materials usually require greater bend radii, which means that analysis 

geometry is not fully representative of the actual flange configuration. 

Additionally, it is usually not viable to make the flange normal to the plane of the 

plate. This is because of high residual tensile stresses resulting from the difference 

between the circumference of the formed flange edge and its initial flat pattern 

cutout. Residual tensile stresses are generally to be avoided in fatigue critical 

structure. Padding of the cutout perimeter is possible for thicker materials, 

furthermore, the flange may be machined (although the cost of such operation is 

probably substantial). This would allow for reduced stresses at the cutout 

perimeter, serve as a rigid platform for the flange and allow the use of full benefit 

of flange reinforcement.  

Fillet between the plate and the flange needs to be incorporated to reduce 

further stress concentration. However, such a fillet is not necessary if the flange 

is cold formed. The fillet is unavoidable for machined flanges and may result in 

additional weight penalties.  

Nonetheless, research shows that nearly all cutouts in structural members, 

such as frame or floor beam webs and ribs are reinforced in some way or another. 

If such a structure is to be analyzed, for example, when performing repairs, the 

effects of cutout reinforcement may be considered and benefited from. 
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