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Anomouin. Moodentoemvcs npoyec 008620mpugano20 pPyUHYBAHHS 6 A3KOYNPYICHUX MAMepianie npu 3a2aibHux
MPUBICHUX YMOBAX HABAHMANCEHHS. Memow € oyiHKa 3anedcHocmi e8ontoyii NOKAIbHOI KOHYEHMpPAayii HanpysiceHs y
yaci 6i0 mpugicnocmi HanpydiceHv i napamempa Jlode. Busnauanvhi pieHAHHA Mamepiany ORUCYIOMbCSA 3
BUKOPUCTHAHHAM NOXIOHUX Op0008020 nopsdky. CniesioHowen s HanpyicerHs-0epopmayin cpopmynbosani Ha OCHOBL
y3azanvHeHHs mooeni muny Pabommosa, sika onucye yukiu eucmepesucy 3i 3pOCMAOYUMU HANPYICEHHAMU NpU
3POCMAHHI  KITbKOCMI YUKIi8 Hasanmaicenus. Bemanoseneno xpumepii 015 u3HAYEHHS YUCIA YUKTIG, SIKI MOJICYIb
BUKIUKAMU — pyumysaams emomu O 3pa3Kié npu  3a0aHux —amnuimyoax i wacmomax. B cxnaouux
YMOBAX — HABAHMACEHHS PO3PIZHAIOMbCA 2UOPOCMAMUYHI  HABAHMANCEHHA [ PI3HI CMAHU HANPYHCEHb 3CY8Y.
Poszenanymo cymo MmpugicHi MAKpOCKONIYHI yMo8u HABAHMADICEHHS 3 PIZHUMU 207106HUMU
Hanpyscennsamu. IIpononyemocs y3azaniohena mMooeisb 6'a3K0NpYICHCMI i3 GHYMPIUHIM NaApaMempoM NOUWKOOICEHHS.
Jlokanvni ma MakpoCKONiuHi BU3HAYANLHI CRIBBIOHOWENHS GUpadCeHi sIK cnaokoei inmezpanu. OcKintvKu 00'emHa
KOHYeHmpayis ¢as Iuuaemscs He3MIHHOI V Yaci, Mo GUKOPUCMO8Yyembcsl npunyun Boaemeppa ma nepemeoperns
Kapcona. [[na pospaxynxie eukopucmano npoepamu Fortran 90 3 o6ioniomexu NAG-Fortran. Kowyemmpayis
HANpyoceHb HABKONIO BKIIOUEeHb 3MOOeNbO8AHA, K NPUKIAO, ¥ MPUKOMIOHEHMHOMY KOMRO3ZUMHOMY Mamepiani HA
OCHO8I mampuyi 3 enoKcuoHoi cmonu. 3anponoHo8aHa HeNHIUHA MOOelb, Moxdce Oymu KOPUCHOW O NPOSHO3Y
00820MpUBANOL MIYHOCMI | HEPYIHIBHUX 3AC00I8 KOHMPOTIIO CIMAHY KOMNO3UMIG.
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The composite materials used in progressive technics structures can experience fatigue
damage and failure due to the repeated loads. Hence, the models that stimulate the response of
composites under cyclic loads are necessary to design structures of long term strength. Theoretical
estimation of remaining lifetimes and residual strength is an important modern problem of solid
mechanics. The response of composite structures under fatigue loading is a rather new problem that
has led to the development of a number of fatigue prediction models. The focus of this paper is on
the strength degradation effects, continuum damage mechanics approach, and micromechanics
models capabilities [1-3].

A commonly used approach in fatigue life predictions is to use stress versus life, known as
S—N curves. The constant amplitude cyclic loads are characterized by the mean stress level o™

and the amplitude o* of the stress variations around the mean. This is alternatively expressed in
terms of the maximum stress and the stress ratio or R -ratio. The situation is more complex in the
case of heterogeneous media, strong stress triaxiality, and rheology time presence. For the analysis
of creep fatigue problems in the framework of the quasi-linear viscoelasticity model, we use the
correspondence principle, which is different from that used in the linear theory [4]. In this case,
there is no assumption of an analogy between the defining relations of nonlinear elasticity and
nonlinear viscoelasticity. Let t be the time,x,o(x,t),e(x,t)and u(x,t) be the position, the current

stress, the current strain, and the current displacement in three-dimensional case, respectively. We
assume that the viscoelastic material possesses instantaneous elastic  response

o (x,1), e” (x,1), u®(x,t). The model requires that the loading curves and the unloading curves

must fall in the same curve, and the stress and the strain must return to the origin simultaneously. It
follows that there exists a strain energy function W (e, x,t) with the property that

oW
aeel '

W =W (", x,t), ¢ = (1)
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This equation defines the nonlinear elastic constitutive relations. To formulate the
correspondence principles, we write down the constitutive equations of quasi-linear viscoelasticity

between the current stress o(t) and the instantaneous (elastic) stress ¢* (t)
o*()=gxdo=] g(t-t)ds(t,), g=J()/(0)
6 (t)=o[e()|=g*xde=6xdg, o=rxdc”. (2)
And constitutive relations for creep
e’ () =y[o(t)]=hxde=exdh=h«de, h=E(t)/E(0)
o’ (t)=o¢[e()|=g*xde=6xdg, o=r+dc”. (3)

Quasi-linear viscoelasticity allows generalizing the classical approaches in mechanics of
composites [1]. We use here the enhanced viscoelastic model with internal parameter of stored
damage D [3]. The local and overall constitutive relations between the infinitesimal strain e(x,t)

and the Cauchy stress o(x,t) fields can be expressed as hereditary integrals. At the micro-scale of
individual r constituents these are presented by [5]

e(x,t)=(q, xe*)(x,t), xev . (4)

Space coordinate x denotes a material point within any phase r of the composite and * stands

for the Stieltjes convolution product. Similarly, the macroscopic or effective constitutive relations
can be written as

&)= *< >)(t) ()

Here (e)(t) and (o) (t) are the macroscopic, or averaged, strain and stress, the angle brackets
denote spatial averaging over a representative volume element of the material. Four order tensors
g,(t) and q(t) are the local in phase r and effective creep reduced functions of the composite,

respectively.

Basic concepts of damage mechanics were formulated at the theoretical level [1, 3, 5], in
particular through thermodynamic formalism. Note that the nonlinear response of composite could
be enhanced by strength reduction damage [6]. The strain equivalence hypothesis, which states that
any deformation behavior, whether uniaxial or multi-axial, of a damaged material is represented by
the constitutive laws of the virgin material in which the usual stress o(t) is replaced by the so-

called effective stress &(t), which enables the definition of an effective stress
() =o®@-D)". (6)
Here &(t) is defined as the stress in the effective (undamaged) state. Therefore, &(t) has been
termed the effective stress. Thus, in the presence of damage(0< D <1) , the effective area is
reduced by a factor of (1 — D) , While the effective stress is increased by the same factor, so that the

force 6A = oA is preserved. In our model, the viscoelastic strain energy function W (t) is coupled
with damage parameter D . The expression of W (t) is defined as [2]

2w (e.t) = @-D)[ j ae(t) ce(t,)

E(2t—t, t)—dtdtz, @)
Y =—dW /6D

where . E(t) . is the relaxation tensor. The internal scalar variable D models the damage, which is

assumed to be isotropic and varies between O for undamaged material and 1 under complete
failure. The thermodynamic force associated e(t) with D is denoted. The constitutive equation may

be written in the compliance formulation to describe creep phenomena
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According to (5) in quasi-linear viscoelasticity, for the proposed viscoelastic model coupled
with damage the expression of stress is written as

s(t) = 0-DM)[ h(t-t) = "'d

The stress o(t) is thus related to the damage variable D(t) and to the whole history of
viscoelastic strains throw the energy W (e,t) via Boltzmann’s hereditary integral. Note that the

constant volume concentration of phases remains unchanged after transforming from the time
domain to the Carson domain. The Fortran95 programs from NAG-Fortran library we use for
numerical analysis required. Statistical averaging of expressions is performed to define the mean
deformation of short inclusions randomly oriented in volume. The result is that overall response of
such a composite is isotropic [7]. Stress concentration near inclusions and overall creep response
are modeled in the three-component metal matrix composite with aluminum viscoelastic matrix [1].

In our work, we use Hashin’s [2] failure criteria to determine the fiber and matrix failures in a
multicomponent composite. Equations that summarize the failure envelopes for fiber and matrix
failure are obtained from Hashin’s criteria. In particular, short fibers and matrix failure in tension
will be

oW (e ) @)

2 2 2
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u | 4 %2 ER ( 22 33) < 2293 , %1 3 _1. (9)
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In equations (9), X, and X, are the longitudinal tensile and compressive strengths, Y, and

Y. are the transverse tensile and compressive strengths, S, is the in-plane shear strength, and S,,

is the out of plane shear strength. An instantaneous matrix stiffness degradation scheme is used for
the progressive failure when matrix or fiber failure is detected. We evaluate here the residual
stiffness of the representative volume following failure in each mode [2]. In other words, the fatigue
model used here is based on stiffness and strength reduction directly applied to the engineering
stiffness constants and strengths that are RVE properties. To quantify and visualize the level of
damage, a measure of the relative reduction in the stiffness/strength parameter due to damage D,, is

calculated using equation (9)

D, —1- 1

(10)
init

The non-linear cumulative damage rule for isotropic viscoelastic composite materials is used

here. Scalar damage variable D(t) evolves with the number of cycles. The evolution of damage is

governed by increment methods [5]

Jo

N is the number of cycles at the current stress state o,, D, and D, , are the amount of
damage after the current, and previous cycles, respectively, g, is a material parameter, and «, is a

function of the current triaxial stress state [6].

The fatigue life of composites is evidently connected with stress concentration on the
interphase surfaces. To present the formulation of the general interface model we introduce the
following normal v and tangent n projection tensors of second order

v=n®n; m=1-w. (11)

_J. [1 (1 D)l+ﬁf]af( Oy )ﬁde

D(k 1)

20



Cekuis 1. CyuyacHi nmpo6Jiemu Mexaniku 1e¢opMiBHOT0 TBepAOro Tijia

Symbol 1 is the 3D second-order identity tensor. Let us construct further the normal N and
tangent T projection tensors of fourth order by
N=I-T;, T=1q®n, (12)

I is the fourth-order identity tensor for the space of second-order symmetric tensors. In fact,
T and N correspond to the exterior and interior projection operators of Hill [1]. Next, we write

N = (5 Vit 0Va t v +ovi) —vivie, Tyja = (77|k771| + 15 )

1%
ukl (Zﬂ) (Nijkl_Eninjnknlj; ikl = Zﬂ(Tuld"'l 77|177klj

rm=(NEN)*, II(n)=(TJ T)’l_ (13)
It can be shown that I is given by [1]
F(n)=%(G(n)® N+N® G(n)), (14)

where the second-order tensor G is calculated by G= Q*, Q=nE n. In addition, the
tensorsI'(n), II(n), relaxation function E(t) and creep function J(t) are connected by the identity

JiI+ T'E=1.

Nonlinearity of metal matrix is connected with instant elastic properties and stored in time
micro-defects. Some numerical examples were analyzed. Internal stress concentration and fatigue
life was modeled for metal matrix composite with constituents: nonlinear visco-elastic Al8091
matrix (A =44.93GPa, u=31.0 GPa, v, =—-435GPa), and nonlinear elastic boron and SiC short

fibers. Properties of fibers are presented in Table 1 in [8]. Our approach realized here is taking into
account not only mean field stress state [1] but local stresses near short fiber in viscoelastic matrix
[8] due to cyclic external loading. As a part of conclusions it should be noted that results of fatigue
life prediction with the model proposed are in an acceptable correlation with known from literature
experimental data. Due to multi-parameter nature of process and used approach, it is needed to
continue this work, especially in the sense of identification material constants.
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